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ABSTRACT

0o

A method is presented whereby accurate temperature-altitude pro-
files of planetary atmospheres may be determined from the number-den-
sity profiles of two inert gases having markedly different molecular

"weights M. In the earth's atmosphere, such gases would preferably be
helium and argon. In contrast to previous methods in which mass-den-
sity profiles permitted the calculation of only the ratio T/M at alti-
tudes sufficiently below the highest altitude of density data, the two-
gas method yields values of kinetic temperature T, not only at low
altitudes where number-density data for both gases exist, but also up
to the greatest altitude for which the light-gas number-density data
have been measured. The method depends upon recently developed mass
spectrometers with detection sensitivites of the order of 105 particles

per cubic centimeter.

A rigorous error analysis predicts the accuracy of the resulting
temperatures on the basis of sensor and telemeter characteristics, and
allows for optimizing any actual experiment as far as range and number

of measurements are concerned.



SUMMARY

A new method is described which allows an accurate determination of
the temperature profile in a heterogeneous atmosphere in which the sev-
eral constituents are in diffusive equilibrium. This method involves
the use of a rocket- or satellite-borne mass spectrometer for the measure-
ment of the individual number-density profiles of two atmospheric species
of widely differing mass number. These data yield temperature profiles
with an accuracy depending only upon the accuracy of the mass spectrometer.
Existing equipment permits the determination of the earth's atmospheric
temperature with an accuracy equal to the accuracy of the number-density

data for altitudes below 250 km.

The first part of this paper deals with some aspects of the develop-
ment of the temperature-density relationships. Recently, careful studies
of this problem have been undertaken in connection with the creation of
new model atmospheres. For this reason, this paper mentions only those
facts which are closely related to the problem of temperature determina-

tion from density profiles.

The innovations which yield the temperature profile are discussed
in detail and a hypothetical application of this method to the upper part

of the earth's atmosphere, demonstrates the power of this approach.

ii



Numerical calculations were performed as an illustration of this method
using the density profiles of two rare gases - He and A - which seem to
be very suitable because of their large difference in molecular weight

and their chemical inertness.

The second part of this paper consists of an extensive error analy-
sis. Because of the compiexity of the problem no direct and reliable
estimations of the errors resulting from experimental uncertainties can
be made. Therefore, a vigorous mathematic error analysis was performed
with two goals in mind: (1) to determine the total uncertainty of the
final results and (2) to determine optimum conditions under which the

final errors will become minimum.

Considerable thought was given to the problem of how the number of
data points used influences the final results; in particular, a study is
made of the problem of the statistical treatment of data points so close

together in altitude, that they cannot be considered independent.

The influence of sensitivity and noise level of the mass spectrometer
and of reading accuracy associated with the telemeter system, were care-
fully considered. All these investigations together allow one to obtain
the important parameters for the proper désign of the experiment as far

as instrumentation and range of investigation is considered.

The error analysis was performed in a very general way which allows
one to adopt this method to many other problems of the evaluation of data
obtained by rocket and satellite experiments.

iidi
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SECTION 1

INTRODUCTION

Knowledge of the atmospheric temperature profile as a function of
height is of great importance for the proper interpretation of many"
physical effects in any given planetary atmosphere and for the under-
standing of the mechanism involved. In particular, even small changes
in the temperature profile can have considerable effects on the pres-

sure and density distribution in any atmosphere.

The temperature with its altitude-dependent variations is one of
the basic atmospheric parameters since it is the defining property of
many other physical properties of an atmosphere. Absorption of solar
radiation at some altitude, for instance, may result in an increase of
temperature which, as a consequence, may change the density of this

atmosphere at much higher altitudes by orders of magnitude.

Any direct approach to the measurement of temperature in a rarefied
gas is practically impossible, and indirect methods applied to the upper
regions of any planetary atmosphere have to date yielded results with .
rather limited accuracy. On the other hand, any discussion of atmos-

pheric properties must be based on realistic model atmospheres which



cannot be created without reasonable estimates of the temperature dis-
tribution with height. 1In the case of the earth's atmosphere, some
model atmospheres (Minzner, 1956; Minzner, 1958; Minzner, 1959; Champion
and Minzner, 1963) have been developed from assumed temperature profiles
which were adjusted repeatedly until the pressure and density values
calculated from these temperature profiles matched the observed rocket

and satellite data within limits compatable with the wide spread of data.

With the availability of rocket- or satellite-bofne high sensitivity
mass spectrometers (G. Sauermann and R. Herzog, 1961), a new method to
obtain a temperature profile.can be suggested. The generally used
approach, to obtain temperatures from density or pressure profiles,
implied knowledge of the mean molecular weight of the atmosphere and in
particular the change of the mean molecular weight with altitude.
Therefore, absolute temperature determinations could not be made ac-
curately, especially at altitudes above 250 km where these determin-

ations may be off by a factor of two.

The method suggested in this paper relies on the knowledge of the
number-density profiles of two inert gases such as helium and argon with
widely differing atomic weights. The great advantage of this choice is
that the distribution of these two gases with height follows the thermo-
dynamical properties of the atmosphere only; no dissociation or ioniza-
tion effects have to be considered, and it is thought that charge ex-

change processes do not seem to effect the distribution of these two

gases, at least up to altitudes of approximately 1000 km.



It will be shown that basically no initial knowledge of the tempera-
ture at any altitude is necessary to establish a temperature profile, as
long as both gases are in diffusive equilibrium. In order to examine the
suitability of the approach, the method was subjected to a vigorous error
analysis which proved the validity of the general principle. Considering
the complexity of the problem, the resulting errors can be kept surprisingly
small, approximately 10% at 700 km altitude, as a numerical calculation

for the case of the earth's atmosphere demonstrated.

This paper represents a modification and condensation of an earlier
study published as a report (Minzner, Sauermann and Peterson 1963) under

Contract NASw-394.



SECTION 2
THE ‘RELATIONSHIP OF TEMPERATURE TO NUMBER DENSITY

We consider an altitude region in which diffusive separation domi-
nates the distribution of the separate atmospheric gases and in which dis-
sociation, ionization, and chemical reactions involving these gases can
be neglected. One may then use the hydrostatic equation and kinetic-
theory considerations to obtain the following well-known equation giving
temperature T2 in terms of Tl and the values of number density versus

altitude, n(h), for a particular atmospheric constituent of molecular

weight M:

h
2

n

T2=-—1T1-%f o) g, (1)

n n

2 h 2
1

where R is the universal gas constant and where the subscripts 1 and 2
specify the value of n or T for particular altitudes consistent with the
limits of the integral. The results are gxpressed in terms of geopoten-
tial altitude "h" (V. Bjerknes, 1910; L.P. Harrison, 1951) by!means of
the defining transformation g(z)dz = Gdh, where g(z) is the.variable ac-
celeration of gravity at geometric altitude "z" and where G is a constant

scale factor. The use of geopotential altitude eliminates the need to



account further for changes in the acceleration of gravity with altitude.

In the form when hl is greater than h2, Equation (1) has been used
by Elterman (1953) to deduce temperature from total number-density data
at altitudes below the reference level hl for which an initial tempera-

ture T1 must be assumed or determined independently. For this applica-

tion M was considered to be the mean molecular weight.

As has long been realized, Equation (1) has a practical limitation
which makes it almost useless for certain situations. The difficulty

comes in computing temperatures T, at altitudes considerably above the

2
reference altitude, for which case n, << n, - For such a calculation one
finds that the values of T2 depend on relatively small differences between

two nearly identical quantities and therefore are of dubious value, es-
pecially since one of the quantities is equal to Tl times a factor

nl/n2 >> 1, which correspondingly magnifies any uncertainty inherent in
Tl' Although this effect is a serious limitation for a heavy gas like
argon, one finds that, for a light gas like helium, the number-density
gradient with respect to altitude, in the region of diffusive separation,
is small enough that the undesirable condition n, << n, is not reached

2 1

except for a very large altitude increment, i.e., of the order of 1000 km.

Equation (1) applied in a downward direction, on the other hand, has

no such limitation. Now, in fact, since n, > n.,, one finds that the fur-

2 1’

ther the computation is carried below the reference level hl’ the less

important is the term containing the reference temperature T This

1




favorable situation is enhanced when the number-density gradient is large,
as for a heavy gas in the region of diffusive separation. In summary,
then, a heavy gas is preferable for a downward-proceeding calculation;

a light gas is preferable for an upward-proceeding calculation.

The two equations implied above will be referred to as the heavy-gas-

down equation and the light-gas-up equation, and are stated as

n* ¥ ha %
__a GM n (h)
Tb_n*Ta+Rf ~ dn (2)
b hb b
h
0 a
__b. _GM n(h)
Ta =z Tb R Jf = dh . 3)
a h a
b

" refers

In these two expressions, as in all later work, the subscript "a
to the higher altitude and "b" to the lower altitude. In addition, the
heavy-gas number densities and the heavy-gas molecular weight are identi-

fied by asterisks, while the light-gas number densities and molecular

weight are designated by regular type.

Thus, to determine the temperature profile for an altitude region,
it would seem desirable to obtain the number densities for two indepen-
dent neutral gases - one a heavy gas, and the other a light gas. The
heavy-gas number densities n*(h) would first be used in the downward
calculation, after assuming some reasonable initial reference temperature

Ta . The temperature Tb , computed at the lower altitude from the heavy-
o 1



gas-down calculation, would then serve as the reference temperature as-
sumed for an upward calculation using the light-gas number densities
n(h). The process may be used iteratively to improve successively the
computed values of temperature between altitudes a and b. After N itera-

tions, for example, one obtains

'n n, "N n n n n n N-1 3
T, =(22) 21 tal1+-2Dy +( 2k
bN n* R nb ao nm Oa n. na
b b b
(4)
5 * %* N-2
r n n n n -
a a b a b
-B-;l:l+—*;1—+ +<'—*;{'> .‘ 5
ny ng a nb a
% k3 *
n nb N nb na nb na n N-1
T ={(=2=2) T +Aa=2|1+==2+...+ ——>
aN * na ao na n* na n* na
b b b
(5)
* * N-1
n n n n -
a'b a b
-Bltl+7;~+..+<—;n—> } R
nb a I'lb a
where h h
* A2 % a
A= p () g B=-G—Mf n) g,
R n* R n_
hb b hb
%
nanb
Under the conditions that > 5 < 1 and N is a large number, Expressions
n a

(4) and (5) converge exactly to the equations



h h

* A2 % a
1 GM n (h) GM | n(h)
Tb = % [ R f * dh - R f n dh } > (6)
n n n a
<_: i _b> h, a h,
n
n a
a
h h

o a4 a
1 GM n (h) GM n(h)
T, = [ R v/\ ~~ dh - EFL/\ - dh } . (7)
h b

t
> hy b b

Expressions (6) and (7) will be referred to as the double-gas-down equa-

7N
sl =]
o |e
1
B I =]
o #le %

tion and the double-gas-up equation, respectively.

For many conditions the interval a to b and the differences in mol-

*
n
s a .
ecular weight of the two gases are such that the ratio -} is several
na nb
orders of magnitude smaller than o In this case only one iteration

b
is needed [N = 1 in Equations (4) and (5)] to arrive at the essentially

correct temperatures Ta and Tb' This is seen from the fact that the

heavy-gas-down expression, under the above restrictions, gives the cor-

rect temperature T, to within very close approximation and, therefore,

b

when used in the light-gas-up expression gives the correct temperatur%
ki

=}

. . , a
profile from b to a. It is expected, from these arguments, that if —% K —»

n n
b
the two double-gas equations must degenerate to the single-gas equations,

o

at least near the end points a and b. It is indeed found that Equations (6)

and (7) after slight simplification become



h
* * a*
n n
_ . _b _a_ GM [n (h)
T, = <Ta 5 Tb> n*+ o f K dh (6a)
b hb b
%* ha
n n
_ _ -3 _b_GM [ n(h)
T, = <Tb - Ta> —= -3 f =~ dh (7a)
n a a
hb

These expressions obvio%sly approach the heavy-gas-down and the light-

Na Na
gas-up equations when — << o
nb b

The double-gas equations have the rather pleasant feature that the

temperature Ta or T, can be computed directly without ever assuming a

b
reference temperature. If the number densities or the relative number
densities for two different gases are known exactly, then the temperature
profile can be determined exactly, and is unique. If, on the other hand,
the same data are known exactly for only one gas, the temperature profile
can be determined uniquely only if the exact temperature at some reference
point within the interval is known. Whether we use the double-gas equa-

tions or the single-gas equations (assuming the exact reference tempera-

ture to be known), the temperature profile is, of course, the same.

The double-gas equations can also be obtained by solving Equations

(2) and (3) simultaneously, assuming that 'I‘a and T, in one equation have

b
the same meaning as in the other equation. The derivation by the itera-

tion procedure does, however, aid considerably in understanding the re-

lationships of the various equations.



SECTION 3

NUMERICAL ILLUSTRATION

The ideas contained in the preceding section are illustrated numeri-
cally by means of a hypothetical set of helium and argon number densities
shown in Figure 1. These densities are computed from the standard atmos-
phere temperature profile (Champion et al, 1962; Champion and Minzner,
1963) on the basis of a mictopause level at 120 km.* According to this
model, argon number-density values vary more than a factor of 105 be-
tween 150 and 450 km altitude, the approximate point where argon signal-
to-noise ratio falls below unity in a mass spectrometer having a sensi-
tivity of 1010 particles per meter3. Helium, on the other hand, varies
by less than a factor of 10 between 150 and 700 km, an altitude where the
number density is still considerably above the noise level of a mass

spectrometer having the sensitivity mentioned above.

Since the temperature profile and the number densities used in the
illustrations are self consistent, the integrals arising from Equation
(1) in its various forms can be evaluated indirectly by means of the re-

lationship

*
Throughout this paper geometric altitude is'identified by the units km
and geopotential altitude by the units km .

10
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2
n
E.M mdhz_];'r - T (8)
R n n 1 2
2 2
hl

Of course, when doing an actual experiment, the temperature profile is
the unknown to be found; thus, the integral must be evaluated directly
by numerical methods. For example, if q heavy-gas density-data points
are available, one might use the following form of Equation (2) obtained

by applying the trapezoidal rule to evaluate the integral:

% * -1 * ‘ % + * Ah

"3 GM % et (ny T )
T, =—=T + == ) n, th, + (2a)
b n* a Rn* J J Rn* 2

b b j=2 b

Figure 2 shows the relative importance of the two terms of the gen-

eral single-gas-down equation resulting when h2 < h1 in Equation (1).

Because the equation is defined in terms of geopotential altitude, Figure
2 is also in terms of geopotential. The heavy line in Figure 2 is the
correct temperature T and the lower dashed lines represent the values of

the integral term in Equation (1) when applied to argon and helium. The
n
values of the ratio term - T
2
the temperature line and the dashed lines at any altitude h

1 are represented by the differences between

9 For argon,

the value of this term drops to a negligibly small value (less than 1%)

at altitudes below h2 = 300 km' when the reference level h, is 450 km'.

1
For helium, on the other hand, with the reference level hl at 700 km',

the ratio term never becomes negligibly small within the region of interest,

12
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and is in fact still 18% of T at h2 = 150 km'., An altitude of 450 km'
was chosen as an upper limit for plotting Equation (1) in terms of argon
data since this is the altitude above which argon can no longer be det-
ected by any presently available mass spectrometers. For helium an upper

altitude limit of 700 km' was chosen, although one could almost certainly

go much higher,

If T1 is incorrectly assumed to be 0°K for an argon calculation,
for example, the value of the ratio term is zero. The computed values of
T2 would thus follow the dashed line labeled Ar, and accurate values of
T2 would be obtained at altitudes below 300 km'. If, on the other hand,
T1 is assumed to be 3000°K in an argon calculation, the value of the ratio
term is 3000° at 450 km' and the computed values of T, follow the solid

2

line labeled Ar. Again, accurate values of T2 are obtained below 300 km'.
For a similar range of assumed values of T1 with helium number-density

data, however, no realistic values of T, are forthcoming for any part of

2
the altitude region where diffusive separation may exist (i.e., above
120 km'). The single-gas-down equation is obviously unsuitable for a

gas as light as helium unless reliable high-altitude reference temperatures

are available.

Figure 3 presents a similar evaluation of the general single-gas-
up equation obtained when h2 > h1 in Equation (1). A semi-log plot is
made necessary by the large range of values, with the heavy line again

being temperature T. The dashed line, representing the value of the

14
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argon integral term, increases indefinitely with increasing altitude as
does the argon ratio term represented by the light solid line labeled

Ar. The temperature T is the difference between the two terms represented
by these two lines. Such a relatively small difference (of the order of
103) between two very large values (i.e., 108 at 450 km') is very in-

accurate. An uncertainty of 10°C in T, at 150 km' propagates to an er-

1
ror of 106 degrees C at 450 km'. It is apparent that the single-gas-up
equation is not suitable for a gas as heavy as argon. With helium, how-
ever, the ratio term and the integral term each have a value of the same
order as the temperature. In this instance, an error of 10°¢C at 150 km'
propagates to an error of only 100°C at 700 km', and it appears that this

equation is quite suitable for a light gas calculation, provided of course

that enough gas is present for the measurement.

Figure 4 shows the evaluation of the double-gas-down expression as
given by Equation (6), presented on a semi-log plot. The heavy line
represents the temperature T, the two dashed lines are the values of the
argon and helium integrals, and the light solid line represents the value
of the dimensionless ratio factor. The difference between the integral

terms multiplied by the ratio factor yields Tb.

In this form, the re-
lationship of the double-gas-down to the heavy-gas-down equatioﬁ is not
evident. 1If, however, each integral term is separately multiplied by
the ratio factor the resulting values are the open circles for the argon

term and the solid circles for the helium term. As b moves below 300 km',

it is evident that the contribution from the helium term becomes small

16



10° 0ICABO - 410P 2

TEMPERATURE (°K)

10
1 1 1 |
\ o CONTRIBUTION TO T, -

o7 \ FROM ARGON DATA b —
B \ o CONTRIBUTION TO T, —] 10' .al °

\ A FROM HELIUM DATA' cle

r e STANDARD TEMP, |
¢ PROFILE T o &altu
A \ ———VALUE OF INTEGRAL —] 10 - € |&
TERM ~—

——VALUE OF RATIO FACTOR| x

w® - ' 0™ .,°_

.
4 w

10 e ) ] '0-2 &

He z

-~ o

3 o= .3 P

W

=

_ o =

ot — : —1 10~
10’ ' | | | | 10-®
(o] 100 200 300 400 500 600 700

GEOPOTENTIAL ALTITUDE (km))

Figure 5. Contribution of the two integral terms and the ratio factor of the
' double~-gas-down temperature equation for helium and argon number

densities.

17



and the double-gas-down equation becomes essentially equal to the heavy-

gas-down equation at low altitude.

Finally, in Figure 5 is illustrated the double-gas-up expression,
as given by Equation (7). As in Figure 4 the heavy line represents the
temperature T, the two dashed lines represent the integral terms, and
the light solid line represents the ratio factor. The value of the argon
integral term is seen to rise rapidly until it approaches a constant near
300 km'. The value of the helium integral term continues to rise with
altitude but always remains below the value of the argon integral. Un-
like the three previous cases, it is not readily demonstrated graphically
that the double-gas-up equation approaches the light gas up equation,

at least with the form of the double-gas~up equation as presented.

18
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SECTION 4
ERROR ANALYSIS - GENERAL

Let us assume that number-density data for two or more gases in the
atmosphere are given. The uncertainties associated with each temperature
equation are likely to vary widely, and each equation will have regions
of optimum utility. To investigate the behavior of the uncertainties
the gaussian method has been used, wherein each data point is assumed
to be normally distributed with an average value y and having a variance
dy. Thus, if x is a function of the independent variables v and if
each variable v has an uncertainty Byi, then the uncertainty 8x in x

is approximated by

2
0% = ) (% ayi> 9)

. 1
1

As a first example of the method, let us assume that the tempera-
tures are computed by considering each density point to be independent
in the sense that the value of one point tells nothing about the value
of a neighboring point. By Equation (9) then, (after assuming that the

integrals are evaluated numerically) one obtains a set of expressions

20



for the temperature uncertainties, one expression for each of the four
temperature equations discussed previously. In order to distinguish be-
tween the various temperature uncertainties, a special notation is used,
as explained by the following examples: (BT %)h signifies the uncertainty
in temperature at altitude h

p @8 determined from the heavy-gas-down equa-

a
tion and computed from the reference level ha' Similarly (BT identifies

b
the uncertainty at altitude ha as obtained from the double-gas-up equation
with hb as the reference level. The underline below "a'" or '"b" denotes
the reference level, and the subscript "h'", '"£" or 'd" denotes the use

of the heavy-gas, light-gas, or double-gas equation. The set of tempera-

ture uncertainties is as follows:

e %) = % W+ @y srp®t? (10)
n
b
(3T :)ﬂ = ﬁ; [v2 + (n dT ) ]1/2 s (11)
- a
e e [(3) (2w
pla= T ¥
CE
b n:
wbe A [T
b d”~

(3-3)

where, for example, if the necessary integrals have been evaluated by

21



the trapezoidal rule using equal intervals Ah one finds that

o? =, +Gl—> en)? + (T, -QM——> ony) +<———> z@n ;8n)
(14)
o, + S e+ @ - B en)? + & Z(z‘m my?. (15)

j=2°

The uncertainties in number density ®n at various altitudes and for
various gases would normally be related to the standard deviations of the
measurements. These uncertainties depend upon the precision of the par-
ticular measuring instruments, i.e., upon the reading error associated
with the output presentation or associated with the telemetry system,
and upon.the ultimate sensitivity which determines the limitations in

the region of low signal-to-noise ratio.

A second type of uncertainty, not associated directly with statistics
but nevertheless of vital concern, is the calibration accuracy. This
calibration accuracy, except for non-linearity and the usually negligible
short-term drift associated with transient phenomena, does not enter into
the calculations of temperature since number densities always appear as
ratios in which the calibration constant converting output current to
number density cancels. The absolute number densities are necessary,
however, in order to provide information on the temperature uncertainties,

n on
which contain not only ratios like o but also terms like —— . It is

b Ty
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obviously of importance to have a calibration uncertainty small with

respect to the truly random errors.

It is difficult to deduce the uncertainties in number density for
many data obtained from rocket flights, (largely for lack of sufficient
concern by the observer during design, calibration and reduction of the
data) but one can generally guess what the order of magnitude of these
uncertainties might be. Let us assume that the measuring instrument is
a mass spectrometer having a sensitivity An, and that the combined effects
of reading error, telemetry, non-linearity and errors in aerodynamic trans-
formations are expressible as a fractional uncertainty At. Then, as an
order-of-magnitude estimate of 8n, for the spectrometer under ambient
conditions, one might considér the function

Sn _ 4n :
== =+ A (n > An) (16)

This function reproduces the general features expected, i.e., when n is

much greater than the noise level, ®n/n is dominated by overall reading

errors, and when n approaches the noise level ®n/n approaches unity. It

is recognized that the term %? tends to be pessimistic, especially when

the noise level is a relatively well-behaved, predictable quantity. There-
. . . An An

fore, under some circumstances, it might be better to replace "y by f£(4n) Y

where f(An) is some proportionality factor, with this factor dependent

on the particular instrumental characteristics near the noise level.

The uncertainty in temperature, 6Ta or BT, , at the reference altitude

b
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presents a different type of problem from that of the uncertainty in
number-density. Since temperature is the unknown and is not directly
measured, the uncertainty in temperature at the reference point must be
either guessed or else determined by an independent method. The single-

gas equations therefore have obvious limitations.

If one has number-density data for two neutral gases, and if nothing
is known about the temperature, the following general procedure would be
followed. First, the altitude region in which the data from the two
gases overlap is used. In this region the temperature and the tempera-
ture uncertainty is determined from the double-gas equations, always
choosing at each altitude the temperature equation that gives the lower
uncertainty. With the endpoint values of the double-gas region as ref-
erences, one then uses the single-gas equations to extend the temperature
and temperature uncertainty above the upper endpoint and below the lower
endpoint. If, however the temperature at a point is known to within some
close limits, it might be profitable to use these limits and work with
the single-gas equations. Examples of how the data can be used in vari-
ous ways to obtain the lowest uncertainties will be shown in Section 5
of this paper where numerical evaluations of the error equations are car-

ried through.

It was seen in an earlier section that for a large enough interval,
only one iteration of the two single-gas equations was needed to give the

essentiafly correct temperature profile. The uncertainty equations have
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a similar behavior although this behavior is not as well pronounced as
it is in the temperature equations and cannot be stated as a general

result. It can be demonstrated that under almost any physically expected
%

n n
conditions provided —% << Ei , Equations (10) and (13) converge to the
n, b
common value
By s &y L
(8T 2 S (3T b)d ™ n* 17)
b

for any reasonable input uncertainty 6Ta assumed for Equation (10). This
is certainly true for the helium-argon data shown in Figure 1. When

this new uncertainty is now used in the light-gas-up uncertainty, Equa-
tion (11), one finds that the constant value of u from Equation (17) is
approached asymptotically by the variable u which appears in Equation
(12), the double-gas-up uncertainty equation. Therefore the light-gas-
up and the double-gas-up uncertainties converge if Equation (17) is the

input for the light-gas-up equation.

n
e, x (T x2 D+ (D (18)
a ng b

It is important to realize, however, that formal iteration of the single-
gas uncertainty equations will not lead to the double-gas uncertainty
equations. It is in fact incorrect to iterate the uncertainty equations
because the data would then in effect be used more than once, and this

is not consistent with the basic ideas of statistics.

Up to now the equations have assumed the complete independence of
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each data point from every other point. Let us observe what effect this
has on the results. As the number of data points increases indefinitely,
the intervals 2h in Equations (14) and (15) become smaller and smaller,
leading ultimately to the uncertainty expressions defined by the condi-

tions

2 2 * 2 2 * 02

u_ = Ta (Sna) + Tb (Bnb) s (19)
2 2 2 2 2

vo = Ta (Bna) + Tb (6nb) . (20)

This, of course, implies the illogical result that there is a limit be-
yond which more data do not help to reduce the uncertainty in temperature.
Therefore it seems that a point-by-point treatment of the data is not
always the best technique and certainly becomes progressively worse as
the data points get closer together. Physical reasoning tells one, that
if two or more data points lie very close to each other in altitude, then
knowledge of one point gives information about the neighbors simply be-
cause the temperature and density of the atmosphere are slowly varying
quantities. If the neighboring points are far apart, knowledge of one
point does not contribute much to the knowledge of its neighbors, and
only then does the assumption, that each data point is independent, be-
come meaningful. A useful and reasonable empirical criterion for ensuring
that point-by-point treatment of the data is as good as one can do is
that the true difference between the actual values of two neighboring
number-densities be several times larger than the uncertainty in each

point.
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The correct way to handle the small Ah problem, i.e., when the dif-
ferences between adjacent points is small compared with the uncertainty
is to use some type of least-squares fit to the data and then proceed
from there. This is often a difficult and always a tedious ordeal, how-
ever. One alternate approach, which is easy to apply and is simple in
concept, is to average two, three, or more adjoining points using each
point only once. The decision on how many points to average would be
made on the basis of how close the points are in altitude coupled with
what is the uncertainty in each point. As an example, suppose one first
decides to average pairs of data points. The average value would then
apply to the mid altitude of the adjoining points, and the uncertainty
of the average value would be l/Jé times the average uncertainty of the
two points. If the new values with their new lower errors satisfied the
conditions that neighboring points differ in magnitude significantly com-
pared with their uncertainties, then these new points may be used in the
temperature expressions, Equations (2), (3), (6), (7) and in the error
expressions, Equations (10) through (13); if not, then three (or more)
adjoining points can be averaged until one reaches the desired conditions
for adjacent points. By this means one is in effect smoothing out those
fluctuations in the data which are a result of random errors but retaining
those fluctuations which are of a size large compared with the uncertainty
and are therefore real. Although small kinks no doubt do occur in the num-
ber-density profile they can be resolved only if data of sufficient number
and quality are obtained so that the uncertainties become smaller than

the kinks.
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The empirical procedure discussed above is clearly not uniquely
defined and therefore requires some judgement in its application. The
statement that one can average two points if they are close enough to-
gether in altitude so that the uncertainties are of the same order as or
somewhat larger than the true difference in magnitude, is vague in the
exact meaning of the words "somewhat larger than'. It seems prudent
therefore to be conservative in applying the averaging process. The
important idea to be gained is that there are poor ways to handle data,
there are relatively good ways to handle data, and there is the one cor-
rect (in a strict statistical sense) way to handle the data. The tech-
nique we have suggested would be classed as one of the relatively good
ways. This approach can very substantially reduce the temperature un-
certainty below that given by straight use of Equations (10), (11), (12),
and (13). Now, in fact, as the number of data points increases indefinitely
the uncertainty tends to zero as it should. The above discussion will be
amplified in the next section, dealing with numerical evaluations of the

error equations.
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SECTION 5
ERROR ANALYSIS - NUMERICAL ILLUSTRATION

In order to make the preceding discussion as clear as possible, the
basic results of an analysis of the uncertainties in a hypothetical, sim-
plified experiment involving number-density data are presented. We assume
that by means of a mass spectrometer, values of number density for helium
and argon over an extended range have been obtained. For simplicity, the
points are assumed to be at intervals of 10 geopotential kilometers be-
ginning at 150 km' and extending to 700 km'. The values of the number
density are assumed to follow the curves shown in Figure 1, and the un-
certainty at each point is assumed to be given by Equation (16) with
On = 1010 meter-3, and At = .01. This value of At assumes that the in-
terpretation of the data is accurate.__In many experiments where exactly
what is being measured is open to quesgion, the value of At may be much
higher than 1%. However, this type of error is not statistical but rather

systematic in nature and cannot be included in a statistical analysis.

At an altitude of 400 km' the number density of the argon is esti-
mated to be 1.5 x lO10 m-3, which is approaching the limits of instrument

sensitivity. Therefore, above 400 km' about all one can say from the
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experiment is that the argon number density is less than the instrument
e 10 -3 s ,
sensitivity of 1 x 100 m ~; there are no such restrictions on the helium

data, however, since the helium density never falls below the instrument

sensitivity in the altitude range considered.

It should be noted in the calculations to follow that since the data
are assumed smooth, the computed temperature profile and the uncertainty
profile are also smooth. 1In a real experiment, of course, the data points
do not all lie on a smooth curve but instead fluctuate about an average
curve. Thus, the computed temperatures and uncertainties will in a real
experiment fluctuate with amplitudes consistent with the fluctuations in

the number densities.

As a first step in our illustrative example, the uncertainties are
computed assuming point to point integration without averaging any groups
of points. The basic results are shown in Figure 6, in which the solid
curves come from the double-gas equations, and the dashed curves come
from the single-gas equations. An initial uncertainty 6T400 = 1000°K
was assumed for the heavy-gas-down calculation, and the resulting value
6T150 = 7.8% was then used in the light-gas-up calculation. It is seen
that ted, the conditi 8T %) x (8T =) and (8T 2), m (8T )

at as expected, e conditions ( oh ~ o4 an ble ¥ bd
hold very closely, so that for this experiment it makes little difference
whether the double-gas or single-gas equations are used. It is interesting
and very encouraging that the temperature uncertainty at 150 km' is as

small as it is. The reason is that since the argon has a very high den-

sity in the interval 150 km' to 250 km' compared with the spectrometer
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Figure 6. Temperature uncertainties computed by a point to point integration

without averaging any group of points.
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sensitivity, the uncertainties come mainly from the quantity At in Equa-
tion (16). The result 6T150 = 7.8°K was obtained assuming At = 1%, but

even if At = 5% were used, one would still obtain tolerable uncertainties,

~ o
namely, 6T150 ~ 40 K.

Since the argon number density decreases very rapidly with increasing
altitude, the percent uncertainty in argon density increases very rapidly
with altitude. On the other hand, since the helium densities decrease
only moderately with increasing altitude, the percent uncertainty in
helium density increases only moderately. The downward proceeding equa-
tions are affected mainly by the argon data, while the upward proceeding
equations are affected mainly by the helium data, and therefore the gen-

eral behavior of the results is readily understandable.

The size of the altitude range of data is also important, and in
general the larger the total altitude interval used the lower the tem-
perature uncertainty. The results for the double-gas-down computation
for an interval 400 to 150 km' and for 300 to 150 km' are shown in Figure
7. Although the two curves converge in the region 150 km' it is obvious
that the curve computed from the higher starting altitude always gives

the lower uncertainty.

The uncertainties computed in the above treatment of the data can
be significantly improved upon by using the data to better advantage.
Following.the procedure described in Section 4, the data are averaged

consistent with the empirical (and rather conservative) requirement that

|
|
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the new adjacent points, arrived at by averaging neighbors, have true
differences greater than the new uncertainties., Thus the averaging

process was carried out as follows:

Altitude Range Altitude Range

of Argon (km') of Helium (km')
no averages taken 150 - 380 150 - 260
average groups of two 390 - 400 270 - 540
average groups of three = = -ww-- 550 - 660
average groups of four = = ----- 670 - 700

This averaging process produced a significant decrease in the over-
all uncertainties in the light gas results as shown in Figure 8. These
are about 10 to 15% decrease for the two-point average 16% for the
three-point average and 20% for the four-point average. The reduction
of uncertainty produced by averaging of heavy gas data are not shown,
because the large slope tends to mask the effect for the conditions
assumed. Only the single-gas equations were used in the calculation
but obviously the double-gas equations must give essentially the same

results.

In Figure 9, the standard atmosphere temperature profile, with which
our number densities are consistent, is shown along with the estimated
uncertainties one would obtain in an experiment as outlined in the i1-
lustration above. This experiment is clearly not one in which good tem-
perture results are obtained above 275 km', mainly because of the rela-

tively sparse amount of assumed data. Consider what the results might
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have been, had the data points been only 1 km' apart instead of 10 km'
apart. The straight point-to-point calculation would improve the results
only slightly compared with the 10 km' data. With the 1 km' data, how-
ever, the averaging process could very effectively be used to reduce
errors by a factor of 2 or 3 over some of the altitude range. The

reason for this is simply that as the number of points averaged together
increases, the uncertainties ®n and consequently ®T decrease as the

square root of the number of points averaged.

One can see that there are likely to be regions of altitude where
it is not very important to get good data. For example, if one wants to
get as good a value of temperature as possible at 150 km', the most im-
portant data is the argon number densities in the region 150 to 250 km'.
Argon data above 250 km' does not have much influence on the calculated
temperature at 150 km'. 1In the light-gas-up equation, however, improve-
ments in the data taken at low altitudes is strongly felt at the higher

altitudes.
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